86可乐
会员书架
首页 >都市言情 >学霸就是要肝 > 第282章 黎曼定理和萧氏猜想

第282章 黎曼定理和萧氏猜想

上一页 章节目录 加入书签 下一章

论是几千年前的欧几里得,又或者是后来的欧拉、高斯、哈代……

一直到如今,塞尔伯格、邦别里、法尔廷斯、德利涅等等的数学家们。

这些名字,成为了通往这个问题答案的引路灯,一直到现在。

名为萧易的年轻人,终于照亮了这通往真理的最后一盏灯。

手中的笔,终于不再矗立,被他轻轻地放在了一边。

起身,然后伸了一个懒腰,走到了窗子边上,拉开了窗帘。

清晨的光照射了进来。

昨天晚上,他可谓是一宿没睡。

但总算,这个夜,没有白熬。

“不过,buff等级,没有升级啊……”

对此,萧易也只能是无奈地摇摇头,到了这种程度,buff等级也没有那么好升级了。

至于有没有可能是因为他的证明是错误的,那就完全不可能了,他对自己的证明有着充足的信心。

所以,他大概还需要再解决一个差不多级别的问题,才能够让buff升级?

这个问题很快就在他的脑海中掠过,现在他已经不想再去想这些事情了。

舒展了一会儿身体后,他打了个哈欠,随后又回到了自己的座位上,重新回顾了一下之前的各种证明过程。

本来只是惯例的察看,但这一次,他却从这些证明过程发现了一个意外的点子。

“自守表示……L-函数……还有几何上的某种‘自然’对象?”

“是不是……对于每一个自守表示ρ,我们都可以构造一个数论L-函数L(s,ρ),以及一个几何上的“自然“对象X(ρ)……”

他重新拿出了笔,然后在上面写下了一个等式,口中也喃喃道:“使得它们都满足这样一个关系式。”

【L(s,ρ)= L(s,X(ρ))】

即,ρ的L-函数等于X(ρ)的某种“自然“的L-函数。

再度放下了笔,他抱住了自己的脑袋。

如果这是成立的,那么就不得了了。

这意味着,他又在朗兰兹纲领的基础上,实现了一个大大的推广。

朗兰兹纲领预见到,每一个自守表示都应该对应于一个几何上的对象,以及一个数论中的L-函数。

而这个关系式,则进一步预见到,这个几何对象和L-函数之间应该有一个直接的等式关系。

而这样的关系,对于数学来说,有着极其重要的意义。

它提供了一个新的统一的视角,将代数、几何、分析三大数学分支联系在一起,从而能够让数学家们将代数中的问题转化为几何中的问题,或者是分析中的问题!

但是,这个等式真的有可能成立吗?

萧易不知道。

因为这是一个崭新的问题。

又需要一段漫长的证明过程。

但是现在的萧易,已经不想再去思考太多了。

接下来的一个周,他只想给自己放个假。

黎曼猜想证明了这么久,就不能享受享受吗?

当然可以。

“至于这个新的问题,那就……”

“命名为萧氏猜想吧。”

嗯,他证明了阿廷猜想和黎曼猜想,现在就再还给数学界一个更加厉害的猜想。

……

点击切换 [繁体版]    [简体版]
上一页 章节目录 加入书签 下一章