86可乐
会员书架
首页 >都市言情 >巅峰学霸 > 第105章 少年得意,挥斥方道

第105章 少年得意,挥斥方道

上一页 章节目录 加入书签 下一页

便打份盒饭就行,我不挑食的,对了,肉多一点。」乔喻说道。

「那给你加两个鸡腿?」「好呀!」

薛松撒了撒嘴,然后走了,没一会,房间门被敲响,乔喻头也没抬的说了句:「请进。」门被推开田言真走了进来,乔喻百忙之中扭头看了眼,连忙叫道:「田导。」

「嗯,在做准备呢?」「是啊!」 「我来看看。」 「您坐。」

「这里改一下,在你没有完成证明的时候,措辞要更严谨,改成,根据几何直觉,可以推测存在一个依赖于曲线X的几何和算术性质的常数C,使得曲线上有理点的个数N(X)≤C。」「哦。「

「还有这里,你的描述是同调范畴QH(Cp)是一个增强的同调范....这里并没有强调出其跟一般意义上的同调范畴区别,我仔细思考了你的想法。

如果要更好的分析曲线在p—进完备空间中的局部同调行为,你可以引入一个量子化同调范畴,如果在同调层面引入量子化的特徵,也许能捕捉到几何结构中细微的局部变化?」

「啊?量子化?但这跟量子物理没关系吧?」

「我是说数学的量子化。在拓扑和代数几何这些领域,量子化是指代离散化或将经典结构提升到更复杂的结构的过程,这一过程通常是非交换的。」田言真看到乔喻还不太明白的样子,拿起了桌上的纸跟笔,说道:「时间不多,我以辛几何中的几何量子化为例给你讲解一下。

首先我们要在相空间中选择一个极化,你可以理解为经典相空间中确定一个方向,或者坐标,来简化问题复杂性。选择极化可以看作选择一种分解,使得一部分坐标被用来描述量子态,而动量则变为微分算子作用于这些量子态上。

然后,通过极化条件来构造一个希尔伯特空间,该空间可以看作是经典相空间的某种函数空间。这个函数空间包含了所有可能的量子态也就是波函数,其结构依赖于经典相空间的辛结构和极化选择的结果。」

田言真一边说着,笔下已经开始写出了一个具体的例子。

「你看,假如一个单个谐振子的相空间由位置q和动量p组成,形成一个平面(q,p)。辛形式可以写为w=dq^dp。我们现在要将这个平面量子化到一个希尔伯特空间,首先选择极化为д/др=..

乔喻静静的听着导师的讲解,不懂的地方就开口提问,就这样十分钟后,他突然又开窍了。

「哦,我明白了,我的Q可以代表量子化不变量,等等,让我想想,我需要一个量子化同调范畴,来分解曲线的同调群,就能通过量子化处理,解释曲线上有理点在局部量子结构中的行为,对吧?田导?」

「嗯.」

「对对对,就是这样的,笔给我用用,嗯,在一个量子化同调范畴....」说着乔喻从田导手中直接把笔抽出,让飞快的在稿纸上把他昨晚琢磨的第一个公式补充完整。田言真看着乔喻写下的这一串公式,面色不变的说道:「证明过程呢?」

「首先Q已经确定是作用在曲线同调群的量子算符了嘛,然后第一步就是构建一个量子同调范畴,首先对H进行分解,构建新的量子态,然后用量子态维数描述曲线同调性。第二步就是找到量子化同调群与有理点的关系,这里就很明显了,同调群的维数直接与曲线的亏格g相关。亏格越大,意味着曲线的几何复杂性越高,有理点的个数相对较少。这个时候把Q加进去,就能到dimQH1(Cp)=f(g,Q),这是为了让局部几何结构的变化更加敏感,进一步限制了有理点的个数。

然后通过Jacobian对有理点进行限制,这是今天讲座上那位罗伯特教授用到的方法,我们可以改一下,放进完备空间里。按照之前的研究Jacobian的阶次越高,意味着曲线上可分配的有理点数量可能更少。

最后再把这个函数构建出来就行了。函数右边前半部分是量子化后的同调群维数,它取决于曲线的亏格g和量子算符Q,后半部分反映了曲线的几何结构和有理点的限制。您真是太厉害了田导,随便指点我几句,就让我迈出了证明有这个常数C的一大步!」

乔喻由衷的感谢了句。

田言真则看着乔喻在稿纸上飞快写下的证明过程沉默不语。他能感觉到心跳正在加速。

「砰砰砰...」像正在被敲打的战鼓一般。

这是什麽领悟速度?他本以为光给乔喻简单讲解量子化起码需要半个小时,因为这其中牵扯到很多复杂的数学概念,很多概念他都不确定乔喻是否接触过。

毕竟乔喻并没有接受过系统化的数学教育,但他讲着,讲着,这家伙突然就把昨天一个粗浅的想法给明确到这种地步了?而且看过程,似乎没有错,还挺严谨。不是没问题,但对于十五岁的孩子来说,他真没法要求更多了!

「你之前接触过辛几何?」压下心头激动的情绪,田言真用尽可能稳定的语气问了句。

「没有啊。」乔喻摇了摇头。

「专门学过量子物理?」田言真又追问道。

「没有啊,就是知道一点点,比如波函数什麽的,以及微观世界没有确定

点击切换 [繁体版]    [简体版]
上一页 章节目录 加入书签 下一页